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Abstract parallel processing imperative [3]. In addition the use of
parallel processing is driven by the fact that close to day
_ of operations solutions are also desired due to the
The crew planning problem has been successfully continuously changing business environment.

solved on a loosely connected ne_twork of qukstations The application example and the algorithms described
(NOW) using advanced computational techniques andj, s paper were in part supported by the European
efficient commun|cat|0n_ patterns. The parallelization of ESPRIT/HPCN project PAROS (Parallel Large Scale
the successful sequential system of Carmen Systems AR ;omatic Crew Scheduling) [1,24]. The project started
guarantees that the results are |mm_ed_|ately useful_andin 1996 with Lufthansa Deutsche Airlines (LH) as the
applicable to a large number of airlines scheduling jnq strial user, Carmen Systems AB, the University of
problems. The parallel pairing generator component of pairag and the Chalmers University of Technology as the
the crew scheduling process achieves a linear speedup Ofyher parters. LH supplied important large problems and
the number of processors and can be efficiently scaled tooptimization requirements in the area of crew planning.
a large number of processors. The novel parallel paRog is an effort to improve the automatic crew
optimizer approach of the paper also achieves almost gopeqyling system produced and marketed by Carmen
linear speedups for large problems solved on a small gygtemg with the use of high performance computing and
number of \_/vorkstatlons._ The Lufthansa problems Fhat modeling techniques. Performance improvements will
were used in our experiments validate our theoretical 44, considering more realistic scheduling periods while
results and prove the value and usefulness of our work.  yiing the marketing department additional time to satisfy
the market needs.
The network of workstations that has been selected as
1. Introduction the parallel processing platform is a cost effective and
widely available computation model. Computers
The use of resource planning optimization techniques connected through high performance networks can be
in industrial applications is imperative for the present used as parallel machines. The availability of faster
competitive environment of the global economies and canworkstations in the past ten years has allowed the airlines
significantly reduce operational costs. A typical example to reduce the use of mainframes and thus reduce their
is the transportation industry where scheduling computational costs. This, however, did create a thrashing
applications like crew scheduling [9] and crew rostering computational effect when it comes to large combinatorial
[4] lead to very large and difficult optimization problems problems. The use of networks of workstations for the
with long computation times. Solving such problems in solution of a single problem minimizes this effect. The
acceptable time with exact algorithms is impossible due toemphasis was to develop new software for efficient
the combinatorial explosion that characterizes most of coordination and cooperation of networked workstations
these problems. Heuristics are often used in order toto achieve higher productivity and faster solutions for the
reduce the search space and improve the computationa¢rew planning problem. While there exist attempts to
tractability of these problems. In any case the run times ofsolve the crew planning problem on high end parallel
these procedures are very high, which makes the use ohardware [17], this paper focuses on issues that arise in
parallelizing this problem on a cluster of workstations.

" This work has been supported by the ESPRIT HPCN program.



The rest of the paper is organized as follows. In sectionbased processes [16]. The optimization phase involves the
2 we describe the crew planning problem and the selection of a set of pairings in order to cover all flight
prevailing solution methodology. The parallel algorithms legs while minimizing the total solution cost.
developed for the two most time critical components of  The solution methodology of the Carmen system [2] is
the solution process, the pairing generator and the pairingshown in (Figure 1) and is presently in production at Air
optimizer, are discussed in sections 3 and 4. TheoreticalFrance, Alitalia, British Airways, KLM, Lufthansa, SAS,
performance analysis of the proposed parallel algorithmsand Swissair. A typical run of the Carmen system consists
is also presented. In section 5 experimental results fromof 50-100 iterations. The main system components are the
typical Lufthansa crew scheduling problems are shown. pairing generation and the optimization modules.
Finally, conclusions and future directions of this work are ~ The total number of possible pairings depends on the
discussed in section 6. structure of the flight network. A typical short haul fleet
for Lufthansa has about 800 daily legs and about 5000
weekly legs. A typical pairing in this fleet contains on the
average twelve legs, and since a leg can be connected to
. , at least ten new legs at each major airport, this produces

The crew planning department receives the schedulecigse 1o 167 pairings. To reduce the number of pairings
_from the aircraft scheduling department_ at.regular time requires an intelligent generation procedure. The
intervals and has to create legal round trips in such a waygntimizer that will be examined and parallelized in this
as to satisfy the crew requirements of all flights. The oher is quite fast and achieves high quality results for
optimal set of trips must comply with the general safety ,roniems up to one million pairings. Within the Carmen
regulations, the company operating policies and the uniongystem and for all of the Lufthansa fleets that were tested,
requirements, while minimizing the total cost. The basic {4 generator always requires five to eight times more

activity to be planned is calldég and involves a single  gyacytion time than the optimizer or about 70-85% of the
departure and a single arrival. Legs are connected into;4| runtime.

round-trips also callegairings that depart and return to
specific crew bases. Given the flight table and the .
distribution of the crews among the crew bases, the3- Parallel Pairing Generator

planning process may be separated as follows:

* selection of the flight legs to be covered 3.1. Pairing Generation Algorithm Description
e pairing generation and optimization

» assignment of the pairings to individual crew members

2. Airline Crew Planning Process
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connecting legs to each other. The pairing generator is
aided by a pre-processe@dnnection matrixthat shows
Parameters Crew Bases " . .
addition, there exists a legality module that calculates the
properties of each chain and validates all the applicable
& e terms a directed connection graph among the legs. A node
of the graph corresponds to a leg and an edge represents a
elements of the matrix for a typical fleet of 1000 legs can
be from 10,000 to 100,000.
@ The most efficient algorithm, with respect to memory
T T—— search (Figure 2). The search always begins from a subset
- of legs known astart legs The search is limited by a
Since the number of possible pairings extends into N0de of the search graph. This maximum number of
millions and possibly billions obtaining a meaningful set connecting branches is known as giearch widthand its
quite complex and time consuming. The generation of a_chain _is checke_d fqr Iegality. IIIega! paths are not further
meaningful set of pairings is aided either by special pre- investigated which implies that the incremental rules must

The pairing generator creates legal pairings by
TCol e Rules the acceptable connections between pairs of legs. In
rules. The connection matrix represents in mathematical
Capacily Constraints Legal Pairngs legal pair-wise connection. The possible non-zero
needs, for the pairing generation process is the depth first
Figure 1. Carmen System DFD maximum number of branches to be considered in each
of pairings, to be given to the optimization procedure, is YPical value range from 10-20 connections. Every leg
processing filtering techniques [14] or optimizer feedback have a monotonic behavior.



distribution of the input data to the workers and the other
for collecting the output from the workers. This scheme
improves the efficiency and the scalability of the parallel
generator, despite of the centralized nature of the

Input: A set of start leg§={s;, S, - - .,S¢, Connection Matrix
CM, set of rules}, search widtt8W(P) as a function of the
working days covered by, whereP denotes a chain of legs

procedure GENERATE
Work queudVQ — S
while (WQ not empty)do
node—~ GET_NEXTWQ)
SEARCHnNodg
endwhile
endprocedure
procedure SEARCHNhodg
P — ADD(nodg
if TEST_LEGALITH, R) then
if Pis aCOMPLETE pairingthen
OUTPUT(P)
endif
while SWP) is not violateddo
r — GET_NEXT_CONNECTIQNode CM)

manager. The typical mapping involves the assignment of
each worker to a different processor.

The design goal of all parallel processing applications
is to minimize the idle time of each worker and the
communication among the processors. To minimize idle
time application specific load balancing is done and an
overlapping between computation and communication is
attempted. To minimize communication we use large
messages, that is, the workers do buffering and
compression of the pairings in order to reduce the network
latency penalty and the volume of the communicated data.

3.3. Application Specific Features

en dfviﬁfcmr) Dynamic Load Balancing Load balancing is achieved
endif by implementing a dynamic workload distribution scheme
P  REMOVEnodd in the manager that implicitly takes into account the speed
endprocedure and the current load of each machine. The number of start

legs that are sent to each worker are also changing
dynamically using a fading algorithm. In the beginning a
sufficient number of start legs is given and near the end
only a single start leg is assigned to each worker. This
scheme attempts to balance the network traffic and the
load balancing sensitivities. In (1) the number of start legs
(n) assigned to each worker as a function of the number of
the remaining start legs)(is shown.

Figure 2. Serial Pairing Generation Algorithm

3.2. Parallelization Approach

An examination of the serial algorithm in Figure 2
reveals the ability for exploiting parallelism during the
pairing generation phase. The majority of the computation
time occurs in th&EARCHprocedure. By distributing the
contents of the work queud/Q, thereby dividing the
computational work among several processors we can = Lm0 m
reduce the computation time. The amount of
computational work done in th@EARCHprocedure for
each element of thewQ is highly variable and  NroraL is the total number of start legs for the current
unpredictable. This implies that the parallelization must iteration of the problemUB is an upper bound for the
incorporate dynamic load balancing mechanisms. initial work distribution andf(r) is a monotonic decay

The parallel programming approach used for the function in [0,1]. The initial work assignment depends on
parallel generator is the manager/worker model. The the number of processor®)(and Nrora. and is done
manager executes th@ENERATE procedure and the simultaneously for all the workers. In addition, efficiency
workers execute th&EARCHprocedure. The manager is also improved by pre-fetching the start legs from the
broadcasts the connection matrix to every worker at themanager. A worker requests the next set of start legs
beginning of the run. This implies that the parallel process before they are needed. It can then perform computation
involves the distribution of a forest of search trees to the while its request is being serviced by the manager.
available workers. The manager distributes dynamically — Because the search tree that corresponds to each start
the start legs and the search width information to the leg may be very irregular a further refinement of the load
workers on a worker demand driven manner. The workersbalancing scheme is also implemented as the end of the
generate all the legal pairings and return them to thepairing generation is approached. The manager decreases
manager. The communication between the manager andhe granularity of the search tree at a lower level and
the workers is asynchronous and there is no need forassigns sub-trees to the workers (Figure 3).
communication between the workers. The manager isFault Tolerance. For production level reliability the
composed of two threads, one responsible for the parallel generator is able to recover from task and host

ax(1, min(UB, flookNtqra /(P 00g 2(Nrora/P))) I 1= Nyorar
if 3nP<r < NroraL ( )
if r < 3nP



failures. The notification mechanism of PVM [11] is used 4. Parallel Pairing Optimizer

to provide application level fault tolerance to the

generator. A worker failure leads to the loss of some .. S A

pairings that either have not been generated, or have beeft-1- Pairing Optimization Problem Definition

generated but not sent. Consequently, this part of the

generation tree must be recalculated by some worker task. The pairing optimization problem is modeled asea

The manager keeps the current computing state of eaclgovering or set partitioning 0-1 constraint satisfaction

worker and in case failure it is used for reassigning the problem [20]. A small number of general capacity

unfinished part of the work. constraints also exist but are not considered in this paper.

Let A= (g) be a0-1 mxn matrix and C = (;Q be a

vector of size n. Let the sets M = {1, ... ,m} and N = {1,
. ,h} correspond to the rows and columns of A. The

value ¢ (j O N ) represents the cost of column j (pairing

). We assume, without loss of generality, that @, O j

O N. We say that a columrij N covers row iLl M, if &

= 1. We say that a subset of column& 8l is a solution

to the set covering problem, if for each rola M, there is

at least one column[j] S with §20. The target of the

level 2

decomposition i Original start leg

Host A Host B Host C optimization algorithm is to select the subset S that
minimizes the sum of the correspondings.c In
Figure 3. Decomposition of the search tree mathematical terms the problem can be written as
min 2 C X, (2)
The program that called the parallel generator detects o

the failure of the manager and can start a new manager, as s.t. ; a;x; 21, x;0{01,i0OM,jON (3)
the manager uses a checkpointing mechanism to store i

state information. The responsibility of the new manager wherex = 1 if j 0 S and x= 0 otherwise. The large

is to reset the workers and to request only the generatiorproblems we were concerned have up to one million
of the pairings that have not been generated. variables and typically between a few hundred to a few
Dynamic Task Creation and Local User Priority. thousand constraints. They are very sparse, usually having
Another powerful feature of the parallel pairing generator only 5 to 10 nonzero entries per column.

is its ability to utilize the availability of new processor ~ The set covering problem i8lP-hard, and many
nodes and to return to their owners machines that must noglgorithms have been proposed for exact [10] as well as
be used in the parallel virtual machine any longer. It is approximate problem solutions [7,27]. The exact
possible to add a new host at any time to the virtual approaches are often based on the branch and bound
parallel machine, and this will cause a new worker to be search technique, which although can be successfully
started automatically. The system also respects theparallelized on the NOW architecture [5,19], has a
workstation owner’s priorities. This is implemented with prohibitive computation time for very large problems.
the suspend/resume set of services. In simple terms, théince our goal was to solve large crew scheduling
worker suspends its operation if the machine load (CPU, problems the approximate solution algorithm proposed in
memory, swap space) is over some specified limits and[27] was selected for parallelization. This is also the
resumes its operation if the machine load is below a algorithm used in the current serial Carmen system and is
specified limit. When a worker is in suspend mode it is particularly efficient for this class of problems.

considered blocked and the manager keeps this worker in

a list of suspended tasks. Periodically, the manager4.2. High Level Optimization Description

requests from the worker information concerning its

machine load and if the load is below the spe_cified_ limit  the optimization algorithm can be categorized as an
the manager moves the worker to the active list of jioraiive |agrangian relaxation heuristic algorithm [25].
workers. If the worker remains in suspend mode for a long The algorithm manipulates the Lagrangést vectorc,

period of time, it is considered as failing, and is remov_ed which is initialized to the cost vector C. The goal of the
completely from the system. The rate of the load checking manipulation is to create a sign pattern for the elements of

operation defines the perfprmance overhead,; mteractlonc’ which corresponds to a feasible solution S (usually
of about once every minute creates a very small

o . : A —
performance overhead (<0.1%). well within 1% of t_he optlmum), given thatx O S, Cj < _
0. In the sequential algorithm all the problem constraints



are iterated, one at a time, updating the correspondingof a large number of small messages, which makes the use

C entries. The algorithm is summarized in Figure 4.

Input: 0-1 mxn constraint matri&, cost vectoC

C<CK «0,0i0MS <0
repeat
for each constrairitdo
r' — CANCEI(CT, S) / cancel out the last contribution
rrt oo SELECTIONri)// select the critical values, r*
s « CONTRIBUTIONr, r*,K ) // compute new contribution
C — UPDATH!', S) // updateC to its new value
endfor
K — INCREASEKK ) /I K parameter sets the convergence speed

until no sign changes i
for each variabl¢ 0 N do

if G <OthenX; — lelseX — O

Figure 4. Serial Optimization Algorithm

r' represents a local temporary copy of @entries that
correspond to constraintr” andr® are the smallest and
the second smallest entries of also calledcritical
variablesfor a particular constraing is the contribution
of constrainti to Cand k 0 [0,1). For each constraiit
there exists a unique sparse veatpdue to the fact that

the algorithm requires the cancellation of the previous

contribution taC before a constraint is iterated again.

4.3. Parallelization Approach

of an efficient low latency communication network an
imperative requirement. The VBD advantage is the small
communicated data volume, which is proportional to the
number of worker processes and the constraints of the
problem. Load balancing is very important for the VBD
approach and a simple and effective strategy is to send
randomly selected variables to each worker process
[26,23].

It can be observed that the main performance issue of
the VBD approach is the requirement to perfoDfm)
synchronization operations per global iteration. To
overcome this and based on the fact that constraints
without common variables can be iterated independently,
such groups should be found [21]. If we consider the
constraint dependence graph where the nodes are the
problem constraints and the edges connect constraints
with common variables, the problem of identifying groups
of independent constraints can be solved as a graph
coloring problem. All the constraints colored with the
same color are independent. The fact that the graph
coloring problem ifNP-hard is not so crucial, since there
is no need for an optimal solution but for a reasonable
approximation [22,26]. A non-optimal fast graph coloring
algorithm based on [18] is used for the creation of the
constraint groups. If a constraint sgt contains only
independent constraints, then th€ONTRIBUTION
operation can be performed group-wise for a| |
constraints at once. TH8PDATE operation can now be
delayed till the end of each constraint group. The benefit
of this approach is that without changing the convergence
characteristics of the algorithm we have managed to

The parallelization of the optimization process must be
done within a single iteration in order to retain the
convergence characteristics of the method. The first
parallelization attempt used a row-wise decomposition
approach. Theory and results on this scheme can be foun
in [12]. A second approach based on the column-wise
decomposition of the problem calledariable based
decompositiorfVBD)[1] was pursued.

The VBD approach is realized by distributing subsets
of variables (columns) to each processor. Each processo
is then responsible for a part 6f and the corresponding
part of theA-matrix. Some of the operations needed for
the constraint update can be conveniently done locally
(e.g., CANCEL UPDATB), but the CONTRIBUTION
operation requires communication. Each worker process, -
first executes in parallel th8 ELECTIONoperation to uses an efficient prOtOCOI.StQCkf .
find the local minimum values, and then communicates . To overcome the Ilmltatlpns_ O.f traditional - and
them to the manager process. The manager calculates angexpensive networks an algorithmic improvement Qf t_he
broadcasts to the workers the contribusbof the current previous parallel algorlthm.was attempteti. The variation
constraint to the reduced cost vector. Lastly, the workers is based on a "lazy” updating procedure ©f Only the

perform theUPDATE operation and proceed with the next common variables with the constraint group that .Wi” be
constraint. The communication involves the transmission |terf';1ted next RARTIAL_UPDATEoperation, see Figure
5) is updated. The reduced cost vector is then fully

reduce the number of the communicated messages and
synchronization steps from the total number of constraints
to the number of independent constraint groups. This
trategy was first done on an SGI Origin 2000 at the
halmers University of Technology, with a speedup of 7
when 8 processors were used [22,26]. However, it can
not be used directly on a conventional network of
workstations, due to the high Ilatency of the
Iinterconnection network. To make this strategy more
viable for NOWs a low latency communication network is
needed [6,15] with hardware routers, which allows
simultaneous communications of all processors. In
addition, an optimized message passing implementation
[8] is necessary, which eliminates memory copies and



updated FULL_UPDATE operation), based on the

contributions of the previous constraint group, during the
time the manager process calculates the contributi@h to

of the current constraint group. This approach overlaps
computation with both communication and previous idle
time due to synchronization, given that the full cost vector
update takes a significant amount of time. The
computation time is slightly increased, and the relaxation
may have no benefit at all in the extreme case of a
problem with a structure that does not permit the creation
of constraint groups with a small number of common

on which global operations requife messages.'l}i,ter is

the iteration time orP processorsNZ and m are the
number of non-zero entries and the rows in the constraint
matrix respectively,t; and t, are the communication
latency and cost per word ahpds the time to complete a
basic floating-point operation.

Sequential Algorithm
The serial implementation has iteration time

variables among them. Figure 5 shows a high level

description of the lazy VBD worker algorithm.

Input: A subset of variable¥, [] N, cost vectorC(V,), set of
constraint group& = {gi, 9, ..., g}, Wwhereg, ={i |[i OM, O]
O g; i andj are independent}

Worker Algorithm:
C-CM)K ~0,0i0MS <0
repeat
for each constraint gupg; 0 G do
for each constrairtd g; do
r' « CANCELC,s)
IMocah T local < SELECTIONI’i) I/ local values are selected
B ~ BUFFERr_IocaI: rJrlocal)
endfor
SENDB, manage) // manager computeONTRIBUTIONof g;
C « FULL_UPDATHS") // update with the contributions of
the previous constraint group
&' « RECEIVHEB, manage) / receive from manager the
contribution of group;
C « PARTIAL_UPDATBgi) /I do only the necessary updates
for next group, leave work for later
endfor
K — INCREASEK )
until no sign changes ig
for each variabl¢ O V, do
if Cj<Othenx ~ 1 elsex « 0
endfor

Figure 5. High-level “lazy” VBD Algorithm

The size of the reduced cost vectorfor each processor
k is M and the contribution of a constraint graafp is
the combination of the contributions of all the
constraints of group;.

4.4. Theoretical Performance Analysis

The modeling of the execution time for a global
iteration of the optimization algorithm as a function of the
problem size,

the number of processors and other
algorithm and hardware characteristics is attempted. The T_ = z toroup =

= )y B INZ+ Uik, +Ao 0 INZCA G, (N

where 4, i, 4,, u are constants. The first term
corresponds to the execution time of the operations
CANCELandSELECTIONthe second corresponds to the
CONTRIBUTIONoperation, and the third to théPDATE
operation. Based on profiling results the first and third
phases take over 95% of the total execution time, which is
equally divided among them.

(4)

Analysis of the “lazy” VBD approach

In the basic VBD approach the first and the third phase
of the algorithm is parallelized, having as a tradensffn
global reduction/broadcast operations. The expected
speedup is thus

P D-l—liler

: )
20P2 Ol + T,

SO

In the next paragraphs we make a more detailed
analysis of the VBD approach with the constraint groups
and the lazy update as in theory, and in practice, proved to
be a very successful parallelization technique.

For each constraint group the required communication
will be the communication time for each worker process
to send the local” andr” values to the manager process
and the communication time required by the manager
process to send back to the worker processes the
computed values.

ZDZ(t +Z p, 1,)

wherep, andps is the volume of the communicated data
per constraint in words, arggis the number of constraints
in the group. In our implementatiqu = ps If the problem
constraints are partitioned NG independent constraint
groups, using a coloring algorithm, the required
communication time will be

tcomm
group

(6)

NG
comm _

2PINGO + 20POn pOf, (7)

analysis assumes that we have balanced distribution of

work and an unloaded network with no special structure,



With the lazy variable update the idle time of the Based on (12) the expected speedups for various
worker  processes is minimized because the problem sizes of the “lazy” VBD approach are presented
communication time T.,,) and the manager in Figure 6. We have assumed an Ethernet based NOW
computation time tend to overlap with the computation ({=0-0293s, t=150Qs, t,=5us), 80 constraint groups

time used by the worker during the update of the cost T the graph coloring and 5% of the non-zeros of a
vector FULL_UPDATE operation). The idle time of the PrOCESsor common between subsequent constraint groups.

worker processes with the “lazy” variable update can be

approximated as 5. Experimental Results
2[P M, — 1"
T . Omax(@, ZCOEE’ —) (8) We have measured the performance of the parallel
generator and the parallel “lazy” VBD optimizer
However, a computation overhe®igheris introduced implementation, using typical crew scheduling problems
NG from Lufthansa. In addition, we report results of the first
T =A0 v (9) prototype that integrated the parallel modules in the
over T2 e D; ' Carmen system for the same problems. The experiments

. ) have been performed on a network of HP715/100
wherey, is the number of common variables between eachyqrkstations ~ interconnected by standard  10Mbps

consequent pair of constraint groups. This is due to thegihernet. All workstations used were of almost equal
fact that additional calculations have to be done to speed (2.89 SPECIint95). The implementation of the
determine and par'uall_y update_ the reduced cost Vector.parallel generator used the PVM message passing library
The expected parallel iteration time would thus be [11] version 4.3, while the implementation of the
iter _ optimizer used the HP-MPI optimized library [13] version
T =Tt Tt T, . :
ovER L TRsEL _ 10 1.2. PVM provides support for dynamic resource and
_ _'_'I'lIter +max0 2[PIT,, - T ) (10) process control and robustness, used by the parallel
B chqyi P ’ generator application. MPI supports asynchronous and
& P 2[P _ M _ |
non-blocking communication operations, which help the
For a reasonable number of processors and for largeoverlap between computation and communication, which
problem instances],"® is much larger than the required i vital for the parallel optimizer. All the programs were
communication time, and the third term of (10) tends to W.”tten n A.NSI C++. The values presented were obtained
zero, and thus with exclusive use of the processors and the network.

IDLE

+ TPHASB

) iter Name | dI_kopt dl_splimp d_gg wk_gg
— 1
T =, 0, DZG Vit =5 (11) legs 1087 946 946 6196
pairings | 159073 318938 396904 59456p
which makes the expected speedup equal to CPUs Time in seconds
_ 1 10860 20760 26460 31380
P [Tt 2 5563 10797 13771 16834
SO : — (12) 4 2804 5448 7061 8436
PLA, O, DZ yitT 6 1892 3686 4536 5338
N 8 1385 2797 3466 4312
) 10 1112 2181 2818 3288
7 Table 1. Results of parallel generator
B
= The parallel generator and optimizer were tested with
W oq four different problems of various sizes. In Table 1 we
< can see the characteristics of these problems and the
o runtimes of the parallel generator for different number of
1 workstations. The parallel generation time decreases in all
0 cases almost linearly with respect to the number of
i . B e iy workstations used.
P The output of the generator module then became the

input to the optimization filtering module as it is shown in

Figure 6. “Lazy” VBD speedup curves Figure 1. The filtering module attempts to reduce the size

for various problem sizes



of the constraint matrix by finding equivalent columns and processing is significant which increases even further the
rows and eliminating duplicate or redundant elements. In proportion of the sequential components.
Table 2 we give the characteristics of the filtered

problems and the performance results of the parallel Parallel prototype Serial
“lazy” VBD optimizer, with NZ representing the number Generator | Optimizer | Sequential
of non-zero elements and s the sparsity ratio of the matrix.| name J M0 CPUS)| “CPUs) | Pat | 155 | Total | SPee?
di_kopt | 1112 | 259.32| 909.44 22847 1299%.6 59
Name dl_kopt DI_splimp dli_gg wk_gg dl_slimp 2181 434.19( 2225.8L 4841.0 244839 55
Legs 705 641 643 5787 di_gg 2818 | 752.89| 2922.31 64932 3214p.4 4ps5
Pairings 156197 316958 393904 590063 wk_gg 3288 | 1041.76 6381.18 10740. 4183p.1 30
NZ 1826456 | 4074017 [ 4555324 989058
s (% 1.65697 1.98101 1.79009 0.51 .
CF(>u)s Time in seconds Table 3. Results of the Carmen system with the
1 95153 | 149813 | 2763.13 4071 integrated parallel modules
2 634.54 932.14 1493.57 2035.48
3 365.90 739.76 1001.13 1380,53 .
2 559 32 43419 75289 104176 6. Conclusions and Future Work
Table 2. Results of “lazy” VBD optimizer In this paper we presented the prevailing methodology

for the solution of the crew planning problem and parallel

The quality of the solution remains as in the sequential @/901ithms for the solution of the main steps of this
execution while the speedup that is achieved is quite PrOCESS: The architecture as_sumed in the_ paper and in the
significant. Particularly, for the larger probldm wk_gg ESPRIT/HPCN research project PAROS, involves the use

the speedups are excellent because a small number off €Xisting interconnected workstations. The idea has
large constraint groups exist for this problem. been_ to better utilize the_ existing mfr_astructure_ for the
Consequently, the granularity of the computation work is Solution of hard and time consuming combinatorial
coarse-grained, the communication with the manager isProPlems that appear in the context of airline crew
sparse and the idle time is close to zero. In addition, theScheduling. .
structure of the problem, which is characterized by long 1 he parallelization of the generator and the optimizer
and sparse constraints, makes the overlap betweerVill give rise to new business advantages for the Carmen

consequent constraint groups minimum. This implies that SYStém product. Detailed analysis of the various
the overhead term is also minimized. From the Parallelization approaches for both the generator and the

experimental results it can be concluded that the optimizer are presente_d and the experimental results of
theoretical analysis does hold and the ability to use (€ best parallel algorithms on a set of real Lufthansa
networks of existing workstations for this work is problems is presented. The improved performance of the
validated. For the problems of this experiment the use of SYStém can be used to solve larger problems and/or to
more workstations does not improve the execution time. INcréase the problem solution quality. The speed and
As it can be seen from Figure 6 about eight workstations quality of thes_e_parallel meth_O(_JIs are therefore critical for
can be maximally used efficiently for practical crew the overall e_f'f|C|ency of an airline. The o!emand for suc_:h
scheduling problems. processes increases even fu_rther_ with the ongoing
The parallel components have been integrated in aderegulation of the airline operations in Europe.
prototype system, coexisting with the sequential Carmen  ©On @ more technical level, an attempt will be made to
components. These sequential components take 5-15% ofivoid the generator manager collection of_ all the pairings
the total runtime on the average, depending on the size of’foduced by the generator workers. This collection is
the problem. We run the test problems with the prototype currenfcly performed due to the_ fact that a g!obal filtering
system and we report the results in Table 3. The total operation must be done. If this global filtering could be
runtime of the parallel system is the sum of the parallel 40N€ in parallel, there would be no need to collect all the
generation time, the parallel optimization time and the Pafings thus reducing the communication expense of the
time spent in the sequential components of the systemSYStem. Another implication of this could be that the
The execution of the serial Carmen system on an9€nerator workers could in practice be the same with the
equivalent machine is also reported. We reduced theoptlmlzatlon_workers._ In add_|t|on, the parallellzapon of
execution time about five times for the three problems, e connection matrix creation and preprocessing step
and four times for the last problem. The last problem is a before the generation will be also examined because it hz?\s
large weekly scheduling example where the problem become now the system bottleneck. Lastly, the synthesis

initialization time as well as the connection matrix pre-



of the “lazy” VBD approach with the sub-problem
selection approach of [26] will be investigated.
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