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Abstract

The crew planning problem has been successfully
solved on a loosely connected network of workstations
(NOW) using advanced computational techniques and
efficient communication patterns. The parallelization of
the successful sequential system of Carmen Systems AB
guarantees that the results are immediately useful and
applicable to a large number of airlines scheduling
problems. The parallel pairing generator component of
the crew scheduling process achieves a linear speedup on
the number of processors and can be efficiently scaled to
a large number of processors. The novel parallel
optimizer approach of the paper also achieves almost
linear speedups for large problems solved on a small
number of workstations. The Lufthansa problems that
were used in our experiments validate our theoretical
results and prove the value and usefulness of our work.

1. Introduction

The use of resource planning optimization techniques
in industrial applications is imperative for the present
competitive environment of the global economies and can
significantly reduce operational costs. A typical example
is the transportation industry where scheduling
applications like crew scheduling [9] and crew rostering
[4] lead to very large and difficult optimization problems
with long computation times. Solving such problems in
acceptable time with exact algorithms is impossible due to
the combinatorial explosion that characterizes most of
these problems. Heuristics are often used in order to
reduce the search space and improve the computational
tractability of these problems. In any case the run times of
these procedures are very high, which makes the use of

parallel processing imperative [3]. In addition the use of
parallel processing is driven by the fact that close to day
of operations solutions are also desired due to the
continuously changing business environment.

The application example and the algorithms described
in this paper were in part supported by the European
ESPRIT/HPCN project PAROS (Parallel Large Scale
Automatic Crew Scheduling) [1,24]. The project started
in 1996 with Lufthansa Deutsche Airlines (LH) as the
industrial user, Carmen Systems AB, the University of
Patras and the Chalmers University of Technology as the
other partners. LH supplied important large problems and
optimization requirements in the area of crew planning.
PAROS is an effort to improve the automatic crew
scheduling system produced and marketed by Carmen
Systems with the use of high performance computing and
modeling techniques. Performance improvements will
allow considering more realistic scheduling periods while
giving the marketing department additional time to satisfy
the market needs.

The network of workstations that has been selected as
the parallel processing platform is a cost effective and
widely available computation model. Computers
connected through high performance networks can be
used as parallel machines. The availability of faster
workstations in the past ten years has allowed the airlines
to reduce the use of mainframes and thus reduce their
computational costs. This, however, did create a thrashing
computational effect when it comes to large combinatorial
problems. The use of networks of workstations for the
solution of a single problem minimizes this effect. The
emphasis was to develop new software for efficient
coordination and cooperation of networked workstations
to achieve higher productivity and faster solutions for the
crew planning problem. While there exist attempts to
solve the crew planning problem on high end parallel
hardware [17], this paper focuses on issues that arise in
parallelizing this problem on a cluster of workstations.



The rest of the paper is organized as follows. In section
2 we describe the crew planning problem and the
prevailing solution methodology. The parallel algorithms
developed for the two most time critical components of
the solution process, the pairing generator and the pairing
optimizer, are discussed in sections 3 and 4. Theoretical
performance analysis of the proposed parallel algorithms
is also presented. In section 5 experimental results from
typical Lufthansa crew scheduling problems are shown.
Finally, conclusions and future directions of this work are
discussed in section 6.

2. Airline Crew Planning Process

The crew planning department receives the schedule
from the aircraft scheduling department at regular time
intervals and has to create legal round trips in such a way
as to satisfy the crew requirements of all flights. The
optimal set of trips must comply with the general safety
regulations, the company operating policies and the union
requirements, while minimizing the total cost. The basic
activity to be planned is called leg and involves a single
departure and a single arrival. Legs are connected into
round-trips also called pairings that depart and return to
specific crew bases. Given the flight table and the
distribution of the crews among the crew bases, the
planning process may be separated as follows:
• selection of the flight legs to be covered
• pairing generation and optimization
• assignment of the pairings to individual crew members
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Since the number of possible pairings extends into

millions and possibly billions obtaining a meaningful set
of pairings, to be given to the optimization procedure, is
quite complex and time consuming. The generation of a
meaningful set of pairings is aided either by special pre-
processing filtering techniques [14] or optimizer feedback

based processes [16]. The optimization phase involves the
selection of a set of pairings in order to cover all flight
legs while minimizing the total solution cost.

The solution methodology of the Carmen system [2] is
shown in (Figure 1) and is presently in production at Air
France, Alitalia, British Airways, KLM, Lufthansa, SAS,
and Swissair. A typical run of the Carmen system consists
of 50-100 iterations. The main system components are the
pairing generation and the optimization modules.

The total number of possible pairings depends on the
structure of the flight network. A typical short haul fleet
for Lufthansa has about 800 daily legs and about 5000
weekly legs. A typical pairing in this fleet contains on the
average twelve legs, and since a leg can be connected to
at least ten new legs at each major airport, this produces
close to 1012 pairings. To reduce the number of pairings
requires an intelligent generation procedure. The
optimizer that will be examined and parallelized in this
paper is quite fast and achieves high quality results for
problems up to one million pairings. Within the Carmen
system and for all of the Lufthansa fleets that were tested,
the generator always requires five to eight times more
execution time than the optimizer or about 70-85% of the
total runtime.

3. Parallel Pairing Generator

3.1. Pairing Generation Algorithm Description

The pairing generator creates legal pairings by
connecting legs to each other. The pairing generator is
aided by a pre-processed connection matrix that shows
the acceptable connections between pairs of legs. In
addition, there exists a legality module that calculates the
properties of each chain and validates all the applicable
rules. The connection matrix represents in mathematical
terms a directed connection graph among the legs. A node
of the graph corresponds to a leg and an edge represents a
legal pair-wise connection. The possible non-zero
elements of the matrix for a typical fleet of 1000 legs can
be from 10,000 to 100,000.

The most efficient algorithm, with respect to memory
needs, for the pairing generation process is the depth first
search (Figure 2). The search always begins from a subset
of legs known as start legs. The search is limited by a
maximum number of branches to be considered in each
node of the search graph. This maximum number of
connecting branches is known as the search width and its
typical value range from 10-20 connections. Every leg
chain is checked for legality. Illegal paths are not further
investigated which implies that the incremental rules must
have a monotonic behavior.



Input:  A set of start legs S = {s1, s2, . . ., sk}, Connection Matrix
CM,  set of rules R, search width SW(P) as a function of the
working days covered by P, where P denotes a chain of legs

procedure GENERATE
      Work queue WQ← S
      while (WQ not empty) do

node← GET_NEXT(WQ)
SEARCH(node)

      endwhile
endprocedure
procedure SEARCH(node)
      P ← ADD(node)
      if  TEST_LEGALITY(P, R) then

if  P is a COMPLETE  pairing then
      OUTPUT(P)
endif
while SW(P) is not violated do
      r ← GET_NEXT_CONNECTION(node, CM)
      SEARCH(r)
endwhile

      endif
      P ← REMOVE(node)

endprocedure
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3.2. Parallelization Approach

An examination of the serial algorithm in Figure 2
reveals the ability for exploiting parallelism during the
pairing generation phase. The majority of the computation
time occurs in the SEARCH procedure. By distributing the
contents of the work queue WQ, thereby dividing the
computational work among several processors we can
reduce the computation time. The amount of
computational work done in the SEARCH procedure for
each element of the WQ is highly variable and
unpredictable. This implies that the parallelization must
incorporate dynamic load balancing mechanisms.

The parallel programming approach used for the
parallel generator is the manager/worker model. The
manager executes the GENERATE procedure and the
workers execute the SEARCH procedure. The manager
broadcasts the connection matrix to every worker at the
beginning of the run. This implies that the parallel process
involves the distribution of a forest of search trees to the
available workers. The manager distributes dynamically
the start legs and the search width information to the
workers on a worker demand driven manner. The workers
generate all the legal pairings and return them to the
manager. The communication between the manager and
the workers is asynchronous and there is no need for
communication between the workers. The manager is
composed of two threads, one responsible for the

distribution of the input data to the workers and the other
for collecting the output from the workers. This scheme
improves the efficiency and the scalability of the parallel
generator, despite of the centralized nature of the
manager. The typical mapping involves the assignment of
each worker to a different processor.

The design goal of all parallel processing applications
is to minimize the idle time of each worker and the
communication among the processors. To minimize idle
time application specific load balancing is done and an
overlapping between computation and communication is
attempted. To minimize communication we use large
messages, that is, the workers do buffering and
compression of the pairings in order to reduce the network
latency penalty and the volume of the communicated data.

3.3. Application Specific Features

Dynamic Load Balancing. Load balancing is achieved
by implementing a dynamic workload distribution scheme
in the manager that implicitly takes into account the speed
and the current load of each machine. The number of start
legs that are sent to each worker are also changing
dynamically using a fading algorithm. In the beginning a
sufficient number of start legs is given and near the end
only a single start leg is assigned to each worker. This
scheme attempts to balance the network traffic and the
load balancing sensitivities. In (1) the number of start legs
(n) assigned to each worker as a function of the number of
the remaining start legs (r) is shown.
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NTOTAL is the total number of start legs for the current
iteration of the problem, UB is an upper bound for the
initial work distribution and f(r) is a monotonic decay
function in [0,1]. The initial work assignment depends on
the number of processors (P) and NTOTAL and is done
simultaneously for all the workers. In addition, efficiency
is also improved by pre-fetching the start legs from the
manager. A worker requests the next set of start legs
before they are needed. It can then perform computation
while its request is being serviced by the manager.

Because the search tree that corresponds to each start
leg may be very irregular a further refinement of the load
balancing scheme is also implemented as the end of the
pairing generation is approached. The manager decreases
the granularity of the search tree at a lower level and
assigns sub-trees to the workers (Figure 3).
Fault Tolerance. For production level reliability the
parallel generator is able to recover from task and host



failures. The notification mechanism of PVM [11] is used
to provide application level fault tolerance to the
generator. A worker failure leads to the loss of some
pairings that either have not been generated, or have been
generated but not sent. Consequently, this part of the
generation tree must be recalculated by some worker task.
The manager keeps the current computing state of each
worker and in case failure it is used for reassigning the
unfinished part of the work.
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The program that called the parallel generator detects
the failure of the manager and can start a new manager, as
the manager uses a checkpointing mechanism to store
state information. The responsibility of the new manager
is to reset the workers and to request only the generation
of the pairings that have not been generated.
Dynamic Task Creation and Local User Priority.
Another powerful feature of the parallel pairing generator
is its ability to utilize the availability of new processor
nodes and to return to their owners machines that must not
be used in the parallel virtual machine any longer. It is
possible to add a new host at any time to the virtual
parallel machine, and this will cause a new worker to be
started automatically. The system also respects the
workstation owner’s priorities. This is implemented with
the suspend/resume set of services. In simple terms, the
worker suspends its operation if the machine load (CPU,
memory, swap space) is over some specified limits and
resumes its operation if the machine load is below a
specified limit. When a worker is in suspend mode it is
considered blocked and the manager keeps this worker in
a list of suspended tasks. Periodically, the manager
requests from the worker information concerning its
machine load and if the load is below the specified limit
the manager moves the worker to the active list of
workers. If the worker remains in suspend mode for a long
period of time, it is considered as failing, and is removed
completely from the system. The rate of the load checking
operation defines the performance overhead; interaction
of about once every minute creates a very small
performance overhead (<0.1%).

4. Parallel Pairing Optimizer

4.1. Pairing Optimization Problem Definition

The pairing optimization problem is modeled as a set
covering or set partitioning 0-1 constraint satisfaction
problem [20]. A small number of general capacity
constraints also exist but are not considered in this paper.

Let A = ( aij ) be a 0-1 m x n matrix and C = ( cj ) be a
vector of size n. Let the sets M = {1, … ,m} and N = {1,
… ,n} correspond to the rows and columns of A. The
value cj ( j ∈ N ) represents the cost of column j (pairing
j). We assume, without loss of generality, that cj ≥ 0, ∀ j
∈ N. We say that a column j ∈ N covers row i ∈ M, if aij

= 1. We say that a subset of columns S ⊆ N is a solution
to the set covering problem, if for each row i ∈ M, there is
at least one column j ∈ S with aij≠0. The target of the
optimization algorithm is to select the subset S that
minimizes the sum of the corresponding cj’s. In
mathematical terms the problem can be written as

m in c xj j
j N∈
∑ (2)

NjMixxats j
Nj

jij ∈∈∈≥∑
∈

 , },1,0{ ,1.. (3)

where xj = 1 if j ∈ S and xj = 0 otherwise. The large
problems we were concerned have up to one million
variables and typically between a few hundred to a few
thousand constraints. They are very sparse, usually having
only 5 to 10 nonzero entries per column.

The set covering problem is NP-hard, and many
algorithms have been proposed for exact [10] as well as
approximate problem solutions [7,27]. The exact
approaches are often based on the branch and bound
search technique, which although can be successfully
parallelized on the NOW architecture [5,19], has a
prohibitive computation time for very large problems.
Since our goal was to solve large crew scheduling
problems the approximate solution algorithm proposed in
[27] was selected for parallelization. This is also the
algorithm used in the current serial Carmen system and is
particularly efficient for this class of problems.

4.2. High Level Optimization Description

The optimization algorithm can be categorized as an
iterative Lagrangian relaxation heuristic algorithm [25].
The algorithm manipulates the Lagrangian cost vector c ,
which is initialized to the cost vector C. The goal of the
manipulation is to create a sign pattern for the elements of
c , which corresponds to a feasible solution S (usually
well within 1% of the optimum), given that ∀ xj ∈ S, cj  <
0. In the sequential algorithm all the problem constraints



are iterated, one at a time, updating the corresponding
c entries.  The algorithm is summarized in Figure 4.

Input:  0-1 mxn constraint matrix A, cost vector C

c ← C, κ ← 0, ∀ i ∈ M si ← 0
repeat

for  each constraint i do
ri ← CANCEL( c , si)  // cancel out the last contribution

r
-
, r+ ← SELECTION(ri) // select the critical values r-, r+

si ← CONTRIBUTION(r-, r+,κ ) // compute new contribution

c ← UPDATE(ri, si)  // update c to its new value

endfor
 κ ← INCREASE(κ ) // κ  parameter sets the convergence speed

until  no sign changes  in c
for  each variable j ∈ N do

if cj < 0 then xj ← 1 else xj ← 0
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ri represents a local temporary copy of the c entries that
correspond to constraint i, r- and r+ are the smallest and
the second smallest entries of ri, also called critical
variables for a particular constraint, si is the contribution
of constraint i to c and κ  ∈ [0,1). For each constraint i
there exists a unique sparse vector si, due to the fact that
the algorithm requires the cancellation of the previous
contribution toc before a constraint is iterated again.

4.3. Parallelization Approach

The parallelization of the optimization process must be
done within a single iteration in order to retain the
convergence characteristics of the method. The first
parallelization attempt used a row-wise decomposition
approach. Theory and results on this scheme can be found
in [12]. A second approach based on the column-wise
decomposition of the problem called variable based
decomposition (VBD)[1] was pursued.

The VBD approach is realized by distributing subsets
of variables (columns) to each processor. Each processor
is then responsible for a part of c  and the corresponding
part of the A-matrix. Some of the operations needed for
the constraint update can be conveniently done locally
(e.g., CANCEL, UPDATE), but the CONTRIBUTION
operation requires communication. Each worker process,
first executes in parallel the SELECTION operation to
find the local minimum values, and then communicates
them to the manager process. The manager calculates and
broadcasts to the workers the contribution si of the current
constraint i to the reduced cost vector. Lastly, the workers
perform the UPDATE operation and proceed with the next
constraint. The communication involves the transmission

of a large number of small messages, which makes the use
of an efficient low latency communication network an
imperative requirement. The VBD advantage is the small
communicated data volume, which is proportional to the
number of worker processes and the constraints of the
problem. Load balancing is very important for the VBD
approach and a simple and effective strategy is to send
randomly selected variables to each worker process
[26,23].

It can be observed that the main performance issue of
the VBD approach is the requirement to perform O(m)
synchronization operations per global iteration. To
overcome this and based on the fact that constraints
without common variables can be iterated independently,
such groups should be found [21]. If we consider the
constraint dependence graph where the nodes are the
problem constraints and the edges connect constraints
with common variables, the problem of identifying groups
of independent constraints can be solved as a graph
coloring problem. All the constraints colored with the
same color are independent. The fact that the graph
coloring problem is NP-hard is not so crucial, since there
is no need for an optimal solution but for a reasonable
approximation [22,26]. A non-optimal fast graph coloring
algorithm based on [18] is used for the creation of the
constraint groups. If a constraint set g contains only
independent constraints, then the CONTRIBUTION
operation can be performed group-wise for all |g|
constraints at once. The UPDATE operation can now be
delayed till the end of each constraint group. The benefit
of this approach is that without changing the convergence
characteristics of the algorithm we have managed to
reduce the number of the communicated messages and
synchronization steps from the total number of constraints
to the number of independent constraint groups. This
strategy was first done on an SGI Origin 2000 at the
Chalmers University of Technology, with a speedup of 7
when 8 processors were used [22,26].  However, it can
not be used directly on a conventional network of
workstations, due to the high latency of the
interconnection network. To make this strategy more
viable for NOWs a low latency communication network is
needed [6,15] with hardware routers, which allows
simultaneous communications of all processors. In
addition, an optimized message passing implementation
[8] is necessary, which eliminates memory copies and
uses an efficient protocol stack.

To overcome the limitations of traditional and
inexpensive networks an algorithmic improvement of the
previous parallel algorithm was attempted. The variation
is based on a “lazy” updating procedure of c . Only the
common variables with the constraint group that will be
iterated next (PARTIAL_UPDATE operation, see Figure
5) is updated. The reduced cost vector is then fully



updated (FULL_UPDATE operation), based on the
contributions of the previous constraint group, during the
time the manager process calculates the contribution to c
of the current constraint group. This approach overlaps
computation with both communication and previous idle
time due to synchronization, given that the full cost vector
update takes a significant amount of time. The
computation time is slightly increased, and the relaxation
may have no benefit at all in the extreme case of a
problem with a structure that does not permit the creation
of constraint groups with a small number of common
variables among them. Figure 5 shows a high level
description of the lazy VBD worker algorithm.

Input:  A subset of variables Vk ⊆ N, cost vector C(Vk), set of

constraint groups G = {g1, g2, …, gr}, where gi = { i | i ∈ M, ∀ j
∈ gi i and j are independent}
Worker Algorithm:

c ← C(Vk), κ ← 0, ∀ i ∈ M si ← 0
repeat

for  each constraint group gi ∈ G do
for each constraint i ∈ gi  do

ri
 ← CANCEL( c , si)

r-
local, r

+
local ← SELECTION(ri) // local values are selected

B ← BUFFER(r-
local, r

+
local)

endfor
SEND(B, manager) // manager computes CONTRIBUTION of gi

c ← FULL_UPDATE(sgi-1) // update with the contributions of
the previous constraint group

sgi ← RECEIVE(B, manager)  // receive from manager the
contribution of group gi

c ← PARTIAL_UPDATE(sgi)  // do only the necessary updates
for next group, leave work for later

endfor
κ ← INCREASE(κ  ) 
until  no sign changes  in c
for  each variable j ∈ Vk do

if cj < 0 then xj ← 1  else xj ← 0

endfor
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The size of the reduced cost vector c  for each processor
k is |Vk| and the contribution of a constraint group sgi, is
the combination of the contributions si of all the
constraints of group gi.

4.4. Theoretical Performance Analysis

The modeling of the execution time for a global
iteration of the optimization algorithm as a function of the
problem size, the number of processors and other
algorithm and hardware characteristics is attempted. The
analysis assumes that we have balanced distribution of
work and an unloaded network with no special structure,

on which global operations require P messages. TP
iter is

the iteration time on P processors, NZ and m are the
number of non-zero entries and the rows in the constraint
matrix respectively, ts and tw are the communication
latency and cost per word and tc is the time to complete a
basic floating-point operation.

Sequential Algorithm
 The serial implementation has iteration time

T
iter

tc NZ m tc tc NZ tc NZ1 1 2= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ≅ ⋅ ⋅λ µ λ λ       (4)

where �, �1, �2, � are constants. The first term
corresponds to the execution time of the operations
CANCEL and SELECTION, the second corresponds to the
CONTRIBUTION operation, and the third to the UPDATE
operation. Based on profiling results the first and third
phases take over 95% of the total execution time, which is
equally divided among them.

Analysis of the “lazy” VBD approach
In the basic VBD approach the first and the third phase

of the algorithm is parallelized, having as a trade-off m+m
global reduction/broadcast operations. The expected
speedup is thus

S
P T

P m t T

iter

s
iter≅

⋅
⋅ ⋅ ⋅ +

1
2

12
(5)

In the next paragraphs we make a more detailed
analysis of the VBD approach with the constraint groups
and the lazy update as in theory, and in practice, proved to
be a very successful parallelization technique.

For each constraint group the required communication
will be the communication time for each worker process
to send the local r- and r+ values to the manager process
and the communication time required by the manager
process to send back to the worker processes the
computed values.

t t p tgroup
comm

s r w
i

q

k

P

= ⋅ + ⋅
==

∑∑2
11

( ) (6)

where pr and ps is the volume of the communicated data
per constraint in words, and q is the number of constraints
in the group. In our implementation pr = ps. If the problem
constraints are partitioned in NG independent constraint
groups, using a coloring algorithm,  the required
communication time will be

T t P NG t P m p t
COMM group

comm

i

NG

s r w= = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
=

∑
1

2 2   (7)



With the lazy variable update the idle time of the
worker processes is minimized because the
communication time (T

COMM
) and the manager

computation time tend to overlap with the computation
time used by the worker during the update of the cost
vector (FULL_UPDATE operation). The idle time of the
worker processes with the “lazy” variable update can be
approximated as

T
P T T

PIDLE

COMM

iter

≅
⋅ ⋅ −

⋅
max( , )0

2

2
1 (8)

However, a computation overhead TOVER is introduced

T t
OVER c i

i

NG

= ⋅ ⋅
=

∑λ γ2
1

(9)

where �i is the number of common variables between each
consequent pair of constraint groups. This is due to the
fact that additional calculations have to be done to
determine and partially update the reduced cost vector.
The expected parallel iteration time would thus be

T T T T T

t
T

P

P T T

P

P
iter

c i
NG

iter iter

OVER PHASE IDLE PHASE

COMM

= + + +

= ⋅ ⋅ + + ⋅ ⋅ −
⋅

− −

∑
1 3

2
1 10

2

2
λ γ max( , ) 

   (10)

For a reasonable number of processors and for large

problem instances, T iter
1 is much larger than the required

communication time, and the third term of (10) tends to
zero, and thus

T t
T

PP
iter

c i
N G

iter

= ⋅ ⋅ +∑λ γ2
1 (11)

which makes the expected speedup equal to

S
P T

P t T

iter

c i
NG

iter≅
⋅

⋅ ⋅ ⋅ +∑
1

2 1λ γ
(12)
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Based on (12) the expected speedups for various
problem sizes of the “lazy” VBD approach are presented
in Figure 6. We have assumed an Ethernet based NOW
(tc=0.0293�s, ts=1500�s, tw=5�s), 80 constraint groups
from the graph coloring and 5% of the non-zeros of a
processor common between subsequent constraint groups.

5. Experimental Results

We have measured the performance of the parallel
generator and the parallel “lazy” VBD optimizer
implementation, using typical crew scheduling problems
from Lufthansa. In addition, we report results of the first
prototype that integrated the parallel modules in the
Carmen system for the same problems. The experiments
have been performed on a network of HP715/100
workstations interconnected by standard 10Mbps
Ethernet. All workstations used were of almost equal
speed (2.89 SPECint95). The implementation of the
parallel generator used the PVM message passing library
[11] version 4.3, while the implementation of the
optimizer used the HP-MPI optimized library [13] version
1.2. PVM provides support for dynamic resource and
process control and robustness, used by the parallel
generator application. MPI supports asynchronous and
non-blocking communication operations, which help the
overlap between computation and communication, which
is vital for the parallel optimizer. All the programs were
written in ANSI C++. The values presented were obtained
with exclusive use of the processors and the network.

Name dl_kopt dl_splimp dl_gg wk_gg
legs 1087 946 946 6196

pairings 159073 318938 396908 594560
CPUs Time in seconds

1 10860 20760 26460 31380
2 5563 10797 13771 16834
4 2804 5448 7061 8436
6 1892 3686 4536 5338
8 1385 2797 3466 4312
10 1112 2181  2818 3288

7DEOH �� 5HVXOWV RI SDUDOOHO JHQHUDWRU

The parallel generator and optimizer were tested with
four different problems of various sizes. In Table 1 we
can see the characteristics of these problems and the
runtimes of the parallel generator for different number of
workstations. The parallel generation time decreases in all
cases almost linearly with respect to the number of
workstations used.

The output of the generator module then became the
input to the optimization filtering module as it is shown in
Figure 1. The filtering module attempts to reduce the size



of the constraint matrix by finding equivalent columns and
rows and eliminating duplicate or redundant elements. In
Table 2 we give the characteristics of the filtered
problems and the performance results of the parallel
“lazy” VBD optimizer, with NZ representing the number
of non-zero elements and s the sparsity ratio of the matrix.

Name dl_kopt Dl_splimp dl_gg wk_gg

Legs 705 641 643 5287
Pairings 156197 316958 393908 590063

NZ 1826456 4074017 4555324 9890583
s (%) 1.65697 1.98101 1.79009 0.51
CPUs Time in seconds

1 951.53 1498.13 2763.12 4071
2 634.54 932.14 1493.57 2035.48
3 365.90 739.76 1001.13 1380,53
4 259.32 434.19 752.89 1041.76
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The quality of the solution remains as in the sequential
execution while the speedup that is achieved is quite
significant. Particularly, for the larger problem lh_wk_gg,
the speedups are excellent because a small number of
large constraint groups exist for this problem.
Consequently, the granularity of the computation work is
coarse-grained, the communication with the manager is
sparse and the idle time is close to zero. In addition, the
structure of the problem, which is characterized by long
and sparse constraints, makes the overlap between
consequent constraint groups minimum. This implies that
the overhead term is also minimized. From the
experimental results it can be concluded that the
theoretical analysis does hold and the ability to use
networks of existing workstations for this work is
validated. For the problems of this experiment the use of
more workstations does not improve the execution time.
As it can be seen from Figure 6 about eight workstations
can be maximally used efficiently for practical crew
scheduling problems.

The parallel components have been integrated in a
prototype system, coexisting with the sequential Carmen
components. These sequential components take 5-15% of
the total runtime on the average, depending on the size of
the problem. We run the test problems with the prototype
system and we report the results in Table 3. The total
runtime of the parallel system is the sum of the parallel
generation time, the parallel optimization time and the
time spent in the sequential components of the system.
The execution of the serial Carmen system on an
equivalent machine is also reported. We reduced the
execution time about five times for the three problems,
and four times for the last problem. The last problem is a
large weekly scheduling example where the problem
initialization time as well as the connection matrix pre-

processing is significant which increases even further the
proportion of the sequential components.

Parallel prototype Serial

name
Generator
(10 CPUs)

Optimizer
(4 CPUs)

Sequential
Part Total Total Speedup

dl_kopt 1112 259.32 909.44 2280.7 12992.6 5.69

dl_slimp 2181 434.19 2225.81 4841.0 24483.9 5.05

dl_gg  2818 752.89 2922.31 6493.2 32145.4 4.95

wk_gg 3288 1041.76 6381.18 10710. 41832.1 3.90
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6. Conclusions and Future Work

In this paper we presented the prevailing methodology
for the solution of the crew planning problem and parallel
algorithms for the solution of the main steps of this
process. The architecture assumed in the paper and in the
ESPRIT/HPCN research project PAROS, involves the use
of existing interconnected workstations. The idea has
been to better utilize the existing infrastructure for the
solution of hard and time consuming combinatorial
problems that appear in the context of airline crew
scheduling.

The parallelization of the generator and the optimizer
will give rise to new business advantages for the Carmen
System product. Detailed analysis of the various
parallelization approaches for both the generator and the
optimizer are presented and the experimental results of
the best parallel algorithms on a set of real Lufthansa
problems is presented. The improved performance of the
system can be used to solve larger problems and/or to
increase the problem solution quality. The speed and
quality of these parallel methods are therefore critical for
the overall efficiency of an airline. The demand for such
processes increases even further with the ongoing
deregulation of the airline operations in Europe.

On a more technical level, an attempt will be made to
avoid the generator manager collection of all the pairings
produced by the generator workers. This collection is
currently performed due to the fact that a global filtering
operation must be done. If this global filtering could be
done in parallel, there would be no need to collect all the
pairings thus reducing the communication expense of the
system. Another implication of this could be that the
generator workers could in practice be the same with the
optimization workers. In addition, the parallelization of
the connection matrix creation and preprocessing step
before the generation will be also examined because it has
become now the system bottleneck. Lastly, the synthesis



of the “lazy” VBD approach with the sub-problem
selection approach of [26] will be investigated.
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